Zagazig University- Banha Branch Faculty of Engineering-Shoubra Math. and Phy. Eng. Department

(تخلفات)

2nd Year: Civil Engineering

Mathematics

Date: 19/12/2004

الامتحان مكون من (5) أسئلة مكتوبة في صفحة واحدة و المطلوب الإجابة على كل الأسئلة 0

Time: 3 Hours

(1)Solve the following P.D.E:

$$(a)3_{u_X} + 4_{u_Y} + 10 u = 5$$

(a)
$$3u_x + 4u_y + 10u = 5$$
 (b) $4u_{xx} - 5u_{xy} + u_{yy} + 2u_x - u_y - 8u = 0$

(2)Solve the LP problems:

(a)maximize f = x + y + z - u

s.t
$$x-y+z-u \le 4$$

 $x+y-z+u \ge 6$, $x,y,z,u \ge 0$.

(b)maximize f = x + 2y

s.t
$$x + y \le 8$$

 $x + 4y = 20$
 $3x + 2y \ge 6$, $x,y \ge 0$.

(3)(a)Find the logarithmic curve that fits the data:

(1, 2), (2, 3), (3, 2.5), (4, 3.8), (5, 6)

- (b) Find the table of differences of the following data and then find the value of y at x = 2: (1, 4), (3, 6), (5, 20), (7, 24).
- (4)(a)Using the bisection method, number of iterations is 4, find a root to the equation: $f(x) = x^5 + 2x - 1 = 0$ in the interval [0,1]
 - (b)Using the inverse interpolation, find a root to the equation:

 $x^3 + 2x - 1 = 0$ in the interval [0, 0.5]

- (5)(a)Show that the function $u(x,y) = x + \cos x \cdot \cosh y$ is harmonic and find its conjugate v(x,y) such that the function w = u + iv is analytic.
 - (b) Using Simpson's rule, evaluate the integral: $\int_{1}^{\infty} \frac{2}{1+x^2} dx$.

Good Luck

Dr. Mohamed H. Eid

2nd Year: Civil Engineering Mathematics & N. Analysis

Date: 12/1/2005

0الامتحان مكون من (5) أسئلة مكتوبة في صفحة واحدة و المطلوب الإجابة على كل الأسئلة

Time: 3 Hours

(1)(a)Solve the following LP problem, graphically:

maximize
$$f = 2x + y$$

s.t $x + y \le 8$
 $x - y \le 4$
 $-x + y \le 6$, $x,y \ge 0$.

(b)Solve the LP problem:

maximize
$$f = x - 3y + 3z$$

s.t $2x + y - z \le 9$
 $x - y \le 1$
 $-3x + 2y + z \le 6$, $x,y,z \ge 0$.

(2)Solve the following P.D.E:

(a)
$$u_x + u_y - 2u = \sqrt{2}$$
 (b) $6u_{xx} - 5u_{xy} + u_{yy} + u_x - u_y + 6u = 0$

(3)(a)Find the logarithmic curve that fits the data:

$$(10, 1), (20, 3), (30, 4), (40, 7), (50, 8)$$

- (b) Find the table of differences of the following data and then find the value of y at x = 1.2: (1, 2), (2, 3), (3, 2), (4,11), (5, 42).
- (4)(a)Find the Lagrange polynomial $P_3(x)$ that satisfies the following data and find y, y` at x = 1.5: (1,1), (2,3), (3,13), (4,37).
 - (b)Using the iterative method, number of iterations is 3, solve the system of equations:

$$\begin{bmatrix} 3 & 1 & -1 \\ 1 & 2 & -1 \\ 2 & -2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \\ 2 \end{bmatrix}$$

- (5)(a)Find u(x,y) and v(x,y) of the function $f(z) = z \cos z$ and show that they satisfy Rieman's equations.
 - (b)Show that the function $u(x,y) = x^3 3x y^2 + y$ is harmonic and find its conjugate v(x,y) such that the function w = u + iv is analytic.